Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 157
Filtrar
1.
Metabolites ; 13(12)2023 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-38132872

RESUMO

MicroRNAs (miRNAs) are small noncoding RNAs approximately 22 nucleotides in length. Their main function is to regulate gene expression at the posttranscriptional level by inhibiting the translation of messenger RNAs (mRNAs). miRNAs originate in the cell nucleus from specific genes, where they can perform their function. However, they can also be found in serum, plasma, or other body fluids travelling within vesicles called exosomes and/or bound to proteins or other particles such as lipoproteins. miRNAs can form complexes outside the cell where they are synthesized, mediating paracrine and endocrine communication between different tissues. In this way, they can modulate the gene expression and function of distal cells. It is known that the expression of miRNAs can be affected by multiple factors, such as the nutritional or pathological state of the individual, or even in conditions such as obesity, insulin resistance, or after any dietary intervention. In this review, we will analyse miRNAs whose expression and circulation are affected in conditions of obesity and insulin resistance, as well as the changes generated after a dietary intervention, with the purpose of identifying new possible biomarkers of early response to nutritional treatment in these conditions.

2.
PLoS One ; 18(10): e0292448, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37796781

RESUMO

Metabolic syndrome is a multifactorial disease with high prevalence worldwide. It is related to cardiovascular disease, diabetes, and obesity. Approximately 80% of patients with metabolic syndrome have some degree of fatty liver disease. An adenosine derivative (IFC-305) has been shown to exert protective effects in models of liver damage as well as on elements involved in central metabolism; therefore, here, we evaluated the effect of IFC-305 in an experimental model of metabolic syndrome in rats induced by a high-fat diet and 10% sucrose in drinking water for 18 weeks. We also determined changes in fatty acid uptake in the Huh-7 cell line. In the experimental model, increases in body mass, serum triglycerides and proinflammatory cytokines were induced in rats, and the adenosine derivative significantly prevented these changes. Interestingly, IFC-305 prevented alterations in glucose and insulin tolerance, enabling the regulation of glucose levels in the same way as in the control group. Histologically, the alterations, including mitochondrial morphological changes, observed in response to the high-fat diet were prevented by administration of the adenosine derivative. This compound exerted protective effects against metabolic syndrome, likely due to its action in metabolic regulation, such as in the regulation of glucose blood levels and hepatocyte fatty acid uptake.


Assuntos
Síndrome Metabólica , Humanos , Ratos , Animais , Síndrome Metabólica/tratamento farmacológico , Síndrome Metabólica/prevenção & controle , Síndrome Metabólica/induzido quimicamente , Sacarose/metabolismo , Dieta Hiperlipídica/efeitos adversos , Suplementos Nutricionais , Adenosina/metabolismo , Glucose/metabolismo , Ácidos Graxos/metabolismo , Fígado/metabolismo
3.
Nutrients ; 15(15)2023 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-37571315

RESUMO

Amino acids have been extensively studied in nutrition, mainly as key elements for maintaining optimal protein synthesis in the body as well as precursors of various nitrogen-containing compounds. However, it is now known that amino acid catabolism is an important element for the metabolic control of different biological processes, although it is still a developing field to have a deeper understanding of its biological implications. The mechanisms involved in the regulation of amino acid catabolism now include the contribution of the gut microbiota to amino acid oxidation and metabolite generation in the intestine, the molecular mechanisms of transcriptional control, and the participation of specific miRNAs involved in the regulation of amino acid degrading enzymes. In addition, molecules derived from amino acid catabolism play a role in metabolism as they are used in the epigenetic regulation of many genes. Thus, this review aims to examine the mechanisms of amino acid catabolism and to support the idea that this process is associated with the immune response, abnormalities during obesity, in particular insulin resistance, and the regulation of thermogenesis.


Assuntos
Resistência à Insulina , MicroRNAs , Humanos , Epigênese Genética , Aminoácidos/metabolismo , Obesidade
4.
PLoS One ; 18(8): e0290082, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37603566

RESUMO

The human gut is home to a complex array of microorganisms interacting with the host and each other, forming a community known as the microbiome. This community has been linked to human health and disease, but understanding the underlying interactions is still challenging for researchers. Standard studies typically use high-throughput sequencing to analyze microbiome distribution in patient samples. Recent advancements in meta-omic data analysis have enabled computational modeling strategies to integrate this information into an in silico model. However, there is a need for improved parameter fitting and data integration features in microbial community modeling. This study proposes a novel alternative strategy utilizing state-of-the-art dynamic flux balance analysis (dFBA) to provide a simple protocol enabling accurate replication of abundance data composition through dynamic parameter estimation and integration of metagenomic data. We used a recurrent optimization algorithm to replicate community distributions from three different sources: mock, in vitro, and clinical microbiome. Our results show an accuracy of 98% and 96% when using in vitro and clinical bacterial abundance distributions, respectively. The proposed modeling scheme allowed us to observe the evolution of metabolites. It could provide a deeper understanding of metabolic interactions while taking advantage of the high contextualization features of GEM schemes to fit the study case. The proposed modeling scheme could improve the approach in cases where external factors determine specific bacterial distributions, such as drug intake.


Assuntos
Microbiota , Humanos , Metagenoma , Algoritmos , Simulação por Computador , Análise de Dados
5.
FASEB J ; 37(8): e23079, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37410022

RESUMO

Genistein is an isoflavone present in soybeans and is considered a bioactive compound due to its widely reported biological activity. We have previously shown that intraperitoneal genistein administration and diet supplementation activates the thermogenic program in rats and mice subcutaneous white adipose tissue (scWAT) under multiple environmental cues, including cold exposure and high-fat diet feeding. However, the mechanistic insights of this process were not previously unveiled. Uncoupling protein 1 (UCP1), a mitochondrial membrane polypeptide responsible for dissipating energy into heat, is considered the most relevant thermogenic marker; thus, we aimed to evaluate whether genistein regulates UCP1 transcription. Here we show that genistein administration to thermoneutral-housed mice leads to the appearance of beige adipocyte markers, including a sharp upregulation of UCP1 expression and protein abundance in scWAT. Reporter assays showed an increase in UCP1 promoter activity after genistein stimulation, and in silico analysis revealed the presence of estrogen (ERE) and cAMP (CRE) response elements as putative candidates of genistein activation. Mutation of the CRE but not the ERE reduced genistein-induced promoter activity by 51%. Additionally, in vitro and in vivo ChIP assays demonstrated the binding of CREB to the UCP1 promoter after acute genistein administration. Taken together, these data elucidate the mechanism of genistein-mediated UCP1 induction and confirm its potential applications in managing metabolic disorders.


Assuntos
Adipócitos Bege , Camundongos , Ratos , Animais , Ativação Transcricional , Adipócitos Bege/metabolismo , Genisteína/farmacologia , Proteína Desacopladora 1/genética , Proteína Desacopladora 1/metabolismo , Tecido Adiposo Branco/metabolismo , Termogênese/genética , Elementos de Resposta , Tecido Adiposo Marrom/metabolismo
6.
Food Funct ; 14(11): 5048-5061, 2023 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-37161495

RESUMO

Obesity is an increasing global public health problem. A strategy to treat obesity is the use of functional foods. Edible and medicinal mushrooms contain diverse bioactive compounds showing important antihyperlipidemic, antioxidant, and prebiotic properties. We analysed the effects of adding (10%) of Pleurotus ostreatus (Po, basidiomata), Ganoderma lucidum (Gl, basidiomata), or Ustilago maydis (Um, galls), milled, to a high fat plus saccharose diet (HFD + S) for 6 months in a model of obesity with Wistar rats. We assessed weight gain, body composition, lipid parameters, endoplasmic reticulum stress (proteins and inflammatory markers: BiP, XBP-1, JNK, p-JNK, TNF-α), and adiponectin in subcutaneous adipose tissue (SAT). The consumption of edible and medicinal mushrooms decreased weight gain (-17.2-30.1%) and fat mass (-23.7-43.1%), maintained fat-free mass, reduced levels of serum biochemical parameters (TC: -40.1-44.1%, TG: -37.7-51.6%, LDL-C: -64.5-71.1%), and prevented adipocyte hypertrophy (-30.9-36.9%) and collagen deposition (-70.9-73.7%) in SAT. Compared with the HFD + S group, mushroom consumption by Wistar rats significantly reduced the expression of proteins associated with endoplasmic reticulum stress and inflammation (BiP: -72.2-88.2%; XBP-1: -71.5-81.8%; JNK: -71.2-90.0%; p-JNK: -37.3-81.0%; TNF-α: -80.7-91.5%), whereas significantly increased adiponectin protein expression (246.4-654.2%) in SAT. These effects outperformed those obtained through the commercial lipid-lowering drug atorvastatin, contributing synergistically to prevent further obesity-related dysfunctions, such as insulin resistance derived from inflammation and ER stress in adipose tissue. Bioactive compounds from edible, functional and medicinal mushrooms represent new emerging therapies for obesity treatments using natural products.


Assuntos
Agaricales , Pleurotus , Reishi , Ratos , Animais , Ratos Wistar , Pleurotus/química , Adiponectina , Fator de Necrose Tumoral alfa/farmacologia , Obesidade/tratamento farmacológico , Obesidade/metabolismo , Tecido Adiposo/metabolismo , Dieta Hiperlipídica/efeitos adversos , Inflamação/tratamento farmacológico , Aumento de Peso , Estresse do Retículo Endoplasmático , Lipídeos/farmacologia
7.
J Ethnopharmacol ; 312: 116522, 2023 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-37080365

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Chaya (Cnidoscolus aconitifolius (Mill.) I.M. Johnst) is an important component of the regular diet and traditional medicine of indigenous communities in Mexico. Customarily, Chaya is consumed as a beverage made of macerated leaf, cooked, or prepared in teas or infusions to empirically treat obesity, diabetes, gastrointestinal disorders, and kidney stones. The beneficial effects of Chaya can be attributed to the presence of protein, dietary fiber, vitamins, and especially polyphenols, which regulate mitochondrial function. Therefore, polyphenols present in Chaya extracts could be used to develop novel strategies to prevent and treat metabolic alterations related to mitochondrial dysfunction in the muscle and liver of subjects with obesity, type 2 diabetes, and cardiovascular diseases. However, limited information is available concerning the effect of Chaya extracts on mitochondrial activity in those tissues. AIM OF THE STUDY: The aim of this study was to evaluate the antioxidant capacity of an aqueous extract (AE) or mixed (methanol/acetone/water) extract (ME) of Chaya leaf and their effect on C2C12 myotubes and primary hepatocyte mitochondrial bioenergetics and fatty acid oxidation (FAO). MATERIALS AND METHODS: Total polyphenol content and antioxidant activity were determined using the Folin-Ciocalteu method and the oxygen radical absorbance capacity assay, respectively. The effect of AE and ME from Chaya leaf on mitochondrial activity and FAO of C2C12 myotubes and primary hepatocytes was evaluated using an extracellular flux analyzer. RESULTS: The AE and ME from Chaya leaf exhibited antioxidant activity and a polyphenol content similar to nopal, another plant used in Mexican traditional medicine. AE significantly (p < 0.05) decreased the maximal respiration and spare respiratory capacity (SRC) of C2C12 cells, whereas ME had little effect on C2C12 mitochondrial function. Conversely, ME significantly (p < 0.05) decreased SRC in primary hepatocytes, whereas AE increased maximal respiration and SRC at low doses (5 and 10 µM). Moreover, low doses of Chaya AE significantly (p < 0.05) increased AMPK phosphorylation, acyl-coenzyme A oxidase protein abundance, and palmitate oxidation in primary hepatocytes. CONCLUSION: The AE of Chaya leaf increases mitochondrial function and FAO of primary hepatocytes, indicating its potential to treat hepatic mitochondrial dysfunction underlying metabolic diseases.


Assuntos
Antioxidantes , Diabetes Mellitus Tipo 2 , Humanos , Antioxidantes/farmacologia , Extratos Vegetais/farmacologia , Fibras Musculares Esqueléticas , Mitocôndrias , Hepatócitos , Polifenóis/farmacologia , Obesidade , Metabolismo Energético , Ácidos Graxos
8.
PLoS One ; 18(4): e0283605, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37022999

RESUMO

Well-characterized and standardized extracts of a Mexican genotype of Ganoderma lucidum (Gl), a medicinal mushroom, cultivated on oak sawdust (Gl-1) or oak sawdust plus acetylsalicylic acid (Gl-2, ASA), have been shown to exert antioxidant, hypocholesterolemic, anti-inflammatory, prebiotic, and anticancer properties. However, toxicity analyses still need to be carried out. Different doses of these Gl-1 or Gl-2 extracts were administered to Wistar rats for 14 days in a repeated dose oral toxicity study. We assessed the external clinical signs, biochemical parameters, liver and kidney tissues, injury and inflammation biomarkers, gene expression, inflammatory responses, proinflammatory mediators, and gut microbiota. Gl extracts had no significant adverse, toxic or harmful effects on male and female rats compared to the control groups. No injury or dysfunction were recorded in the kidney or liver, as there were no significant abnormal variations in organ weight, tissue histopathology, serum biochemical parameters (C-reactive protein, creatinine, urea, glucose, ALT and AST transaminases, TC, LDL-c, TG, HDL-c), urinary parameters (creatinine, urea nitrogen, albumin, the albumin-to-creatinine ratio, glucose), injury and inflammatory biomarkers (KIM-1/TIM-1, TLR4, and NF-кB protein expression; IL-1ß, TNF-α and IL-6 gene expression), or the expression of genes linked to cholesterol metabolism (HMG-CoA, Srebp2, Ldlr). Gl-1 and Gl-2 extracts showed prebiotic effects on the gut microbiota of male and female Wistar rats. Bacterial diversity and relative bacterial abundance (BRA) increased, positively modulating the Firmicutes/Bacteroidetes ratio. The ASA (10 mM) added to the substrate used for mushroom cultivation changed properties and effects of the Gl-2 extract on Wistar rats. The no-observed-adverse-effect-level (NOAEL) was 1000 mg/kg body weight/day of Gl-1 or Gl-2 extracts. Clinical trials are recommended for further exploring the potential therapeutic applications of studied extracts.


Assuntos
Gastroenteropatias , Microbioma Gastrointestinal , Reishi , Ratos , Masculino , Feminino , Animais , Ratos Wistar , Reishi/química , Creatinina/metabolismo , Fígado/metabolismo , Rim/patologia , Extratos Vegetais/toxicidade , Prebióticos , Gastroenteropatias/patologia , Glucose/metabolismo , Biomarcadores/metabolismo , Ureia/metabolismo
9.
Arch Med Res ; 54(3): 176-188, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36990891

RESUMO

A prolonged and elevated postprandial glucose response (PPGR) is now considered a main factor contributing for the development of metabolic syndrome and type 2 diabetes, which could be prevented by dietary interventions. However, dietary recommendations to prevent alterations in PPGR have not always been successful. New evidence has supported that PPGR is not only dependent of dietary factors like the content of carbohydrates, or the glycemic index of the foods, but is also dependent on genetics, body composition, gut microbiota, among others. In recent years, continuous glucose monitoring has made it possible to establish predictions on the effect of different dietary foods on PPGRs through machine learning methods, which use algorithms that integrate genetic, biochemical, physiological and gut microbiota variables for identifying associations between them and clinical variables with aim of personalize dietary recommendations. This has allowed to improve the concept of personalized nutrition, since it is now possible to recommend through these predictions specific dietary foods to prevent elevated PPGRs that are highly variable among individuals. Additional components that can enrich the predictive algorithms are findings of nutrigenomics, nutrigenetics and metabolomics. Thus, this review aims to summarize the evidence of the components that integrate personalized nutrition focused on the prevention of PPGRs, and to show the future of personalized nutrition by laying the groundwork for the development of individualized dietary management and its impact on the improvement of metabolic diseases.


Assuntos
Diabetes Mellitus Tipo 2 , Microbioma Gastrointestinal , Humanos , Diabetes Mellitus Tipo 2/prevenção & controle , Automonitorização da Glicemia , Glicemia , Glucose
10.
J Gastroenterol Hepatol ; 38(5): 791-799, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36807933

RESUMO

BACKGROUND AND AIM: Non-alcoholic fatty liver disease (NAFLD) is the most common cause of liver disease. Increasing evidence indicates that the gut microbiota can play an important role in the pathophysiology of NAFLD. Recently, several studies have tested the predictive value of gut microbiome profiles in NAFLD progression; however, comparisons of microbial signatures in NAFLD or non-alcoholic steatohepatitis (NASH) have produced discrepant results, possibly due to ethnic and environmental factors. Thus, we aimed to characterize the gut metagenome composition of patients with fatty liver disease. METHODS: Gut microbiome of 45 well-characterized patients with obesity and biopsy-proven NAFLD was evaluated using shot-gun sequencing: 11 non-alcoholic fatty liver controls (non-NAFL), 11 with fatty liver, and 23 with NASH. RESULTS: Our study showed that Parabacteroides distasonis and Alistipes putredenis were enriched in fatty liver but not in NASH patients. Notably, in a hierarchical clustering analysis, microbial profiles were differentially distributed among groups, and membership to a Prevotella copri dominant cluster was associated with a greater risk of developing NASH. Functional analyses showed that although no differences in LPS biosynthesis pathways were observed, Prevotella-dominant subjects had higher circulating levels of LPS and a lower abundance of pathways encoding butyrate production. CONCLUSIONS: Our findings suggest that a Prevotella copri dominant bacterial community is associated with a greater risk for NAFLD disease progression, probably linked to higher intestinal permeability and lower capacity for butyrate production.


Assuntos
Hepatopatia Gordurosa não Alcoólica , Humanos , Hepatopatia Gordurosa não Alcoólica/complicações , Metagenoma , Lipopolissacarídeos , Prevotella/genética , Obesidade/complicações , Butiratos
11.
Nutrients ; 15(4)2023 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-36839291

RESUMO

Currently, there is an increasing number of people with mild cognitive (MCI) impairment and dementia (D). In the present work we studied the role of tau protein, ß-amyloid, LPS (lipopolysaccharide), and curli protein of elderly adults with MCI or D and the contribution of gut microbiota. Four groups were studied: young subjects, healthy adults older than 60 years (A), elderly adults with MCI (MCI), and elderly adults with dementia (D). A preclinical study was conducted in old male Wistar rats to evaluate the impact of gut microbiota on curli protein abundance in feces and brain. The results showed that with increasing age, tau protein, ß-amyloid, and LPS significantly increased in serum during MCI and D, and this was associated with an increase in the abundance of E. coli that synthesize the amyloid protein curli, that may promote the aggregation of amyloid proteins. Rats showed a clear increase in the abundance of curli protein in the brain during aging. Thus, cognitive impairment and dementia are in part due to an alteration in the gut microbiota-brain axis via increase in curli protein and LPS leading to an increase in tau and ß-amyloid protein.


Assuntos
Doença de Alzheimer , Disfunção Cognitiva , Microbioma Gastrointestinal , Masculino , Ratos , Animais , Peptídeos beta-Amiloides/metabolismo , Lipopolissacarídeos , Escherichia coli/metabolismo , Ratos Wistar , Envelhecimento , Encéfalo/metabolismo , Fezes
12.
Cell Mol Neurobiol ; 43(4): 1595-1618, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-35953741

RESUMO

Fiber intake is associated with a lower risk for Alzheimer´s disease (AD) in older adults. Intake of plant-based diets rich in soluble fiber promotes the production of short-chain fatty acids (SCFAs: butyrate, acetate, propionate) by gut bacteria. Butyrate administration has antiinflammatory actions, but propionate promotes neuroinflammation. In AD patients, gut microbiota dysbiosis is a common feature even in the prodromal stages of the disease. It is unclear whether the neuroprotective effects of fiber intake rely on gut microbiota modifications and specific actions of SCFAs in brain cells. Here, we show that restoration of the gut microbiota dysbiosis through the intake of soluble fiber resulted in lower propionate and higher butyrate production, reduced astrocyte activation and improved cognitive function in 6-month-old male APP/PS1 mice. The neuroprotective effects were lost in antibiotic-treated mice. Moreover, propionate promoted higher glycolysis and mitochondrial respiration in astrocytes, while butyrate induced a more quiescent metabolism. Therefore, fiber intake neuroprotective action depends on the modulation of butyrate/propionate production by gut bacteria. Our data further support and provide a mechanism to explain the beneficial effects of dietary interventions rich in soluble fiber to prevent dementia and AD. Fiber intake restored the concentration of propionate and butyrate by modulating the composition of gut microbiota in male transgenic (Tg) mice with Alzheimer´s disease. Gut dysbiosis was associated with intestinal damage and high propionate levels in control diet fed-Tg mice. Fiber-rich diet restored intestinal integrity and promoted the abundance of butyrate-producing bacteria. Butyrate concentration was associated with better cognitive performance in fiber-fed Tg mice. A fiber-rich diet may prevent the development of a dysbiotic microbiome and the related cognitive dysfunction in people at risk of developing Alzheimer´s disease.


Assuntos
Doença de Alzheimer , Disfunção Cognitiva , Microbioma Gastrointestinal , Fármacos Neuroprotetores , Camundongos , Animais , Propionatos/farmacologia , Doença de Alzheimer/metabolismo , Microbioma Gastrointestinal/fisiologia , Disbiose , Fármacos Neuroprotetores/farmacologia , Butiratos/farmacologia , Butiratos/metabolismo , Fibras na Dieta/farmacologia , Camundongos Transgênicos , Disfunção Cognitiva/prevenção & controle
13.
Br J Nutr ; 130(1): 93-102, 2023 07 14.
Artigo em Inglês | MEDLINE | ID: mdl-36131385

RESUMO

The present study aimed to determine the prevalence of adiposity-based chronic disease (ABCD) and its association with anthropometric indices in the Mexican population. A cross-sectional study was conducted in 514 adults seen at a clinical research unit. The American Association of Clinical Endocrinology/AACE/ACE criteria were used to diagnose ABCD by first identifying subjects with BMI ≥ 25 kg/m2 and those with BMI of 23-24·9 kg/m2 and waist circumference ≥ 80 cm in women or ≥ 90 cm in men. The presence of metabolic and clinical complications associated with adiposity, such as factors related to metabolic syndrome, prediabetes, type 2 diabetes, dyslipidaemia and arterial hypertension, were subsequently evaluated. Anthropometric indices related to cardiometabolic risk factors were then determined. The results showed the prevalence of ABCD was 87·4 % in total, 91·5 % in men and 86 % in women. The prevalence of ABCD stage 0 was 2·4 %, stage 1 was 33·7 % and stage 2 was 51·3 %. The prevalence of obesity according to BMI was 57·6 %. The waist/hip circumference index (prevalence ratio (PR) = 7·57; 95 % CI 1·52, 37·5) and the conicity index (PR = 3·46; 95 % CI 1·34, 8·93) were better predictors of ABCD, while appendicular skeletal mass % and skeletal muscle mass % decreased the risk of developing ABCD (PR = 0·93; 95 % CI 0·90, 0·96; and PR = 0·95; 95 % CI 0·93, 0·98). In conclusion, the prevalence of ABCD in our study was 87·4 %. This prevalence increased with age. It is important to emphasise that one out of two subjects had severe obesity-related complications (ABCD stage 2).


Assuntos
Diabetes Mellitus Tipo 2 , Adulto , Masculino , Humanos , Feminino , Estudos Transversais , Diabetes Mellitus Tipo 2/complicações , Diabetes Mellitus Tipo 2/epidemiologia , Adiposidade , Índice de Massa Corporal , Prevalência , Antropometria , Circunferência da Cintura , Doença Crônica , Fatores de Risco
15.
Mol Nutr Food Res ; 66(8): e2100838, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35142428

RESUMO

SCOPE: Genistein increases whole body energy expenditure by stimulating white adipose tissue (WAT) browning and thermogenesis. G-Coupled receptor GPR30 can mediate some actions of genistein, however, it is not known whether it is involved in the activation of WAT-thermogenesis. Thus, the aim of the study is to determine whether genistein activates thermogenesis coupled to an increase in WAT browning and mitochondrial activity, in GPR30+/+ and GPR30-/- mice. METHODS AND RESULTS: GPR30+/+ and GPR30-/- mice are fed control or high fat sucrose diets containing or not genistein for 8 weeks. Body weight and composition, energy expenditure, glucose tolerance, and browning markers in WAT, and oxygen consumption rate, 3', 5'-cyclic adenosine monophosphate (cAMP) concentration and browning markers in adipocytes are evaluated. Genistein consumption reduces body weight and fat mass gain in a different extent in both genotypes, however, energy expenditure is lower in GPR30-/- compared to GPR30+/+ mice, accompanied by a reduction in browning markers, maximal mitochondrial respiration, cAMP concentration, and browning markers in cultured adipocytes from GPR30-/- mice. Genistein improves glucose tolerance in GPR30+/+ , but this is partially observed in GPR30-/- mice. CONCLUSION: The results show that GPR30 partially mediates genistein stimulation of WAT thermogenesis and the improvement of glucose tolerance.


Assuntos
Tecido Adiposo Marrom , Genisteína , Tecido Adiposo Marrom/metabolismo , Tecido Adiposo Branco/metabolismo , Animais , Peso Corporal , Metabolismo Energético , Genisteína/metabolismo , Genisteína/farmacologia , Glucose/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Termogênese/genética
16.
Food Res Int ; 151: 110856, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34980392

RESUMO

Several studies have shown that consumption of honey is associated with various health benefits. However, there is scarce evidence on whether honeys modify the intestinal microbiota by preventing the inflammatory response in the host. Therefore, the aim of the present work was to study the effect of Melipona (Mel) and Mantequilla (Mtq) honeys, which contain different bioactive compounds and antioxidant capacity on gut microbiota and metabolic consequences in comparison with other sweeteners, in particular sucrose (S) and high fructose corn syrup (HFCS) in rats. The results of the present work showed that both honeys have polyphenols, flavonoids, antioxidant and bactericidal activities. Rats fed with both honeys gained less weight and body fat by increasing energy expenditure compared to S or HFCS and increased gene expression of antioxidant enzymes mediated by the transcription factor Nrf2. Analysis of the gut microbiota showed that consumption of both honeys modified the beta-diversity compared to those fed S or HFCS resulting in increased abundance of a specific cluster of bacteria of the Clostridium genus particularly Coprococcus eutactus, Defluviitalea saccharophila, Ruminicoccus gnavus and Ruminicoccus flavefaciens. As a result of the changes in the gut microbiota, there was a decrease in LPS- and TLR4-mediated low-grade inflammation and an increase in sIgA. Consumption of both honeys prevented glucose intolerance and increased adipocyte size compared to S or HFCS. In conclusion, consumption of MtqH or MelH can reduce metabolic endotoxemia by modifying the gut microbiota to prevent glucose intolerance.


Assuntos
Microbioma Gastrointestinal , Xarope de Milho Rico em Frutose , Mel , Animais , Abelhas , Inflamação/prevenção & controle , Ratos , Sacarose
17.
Front Oncol ; 12: 988968, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36591465

RESUMO

Introduction: Obesity has been associated with an increased risk of biologically aggressive variants in breast cancer. Women with obesity often have tumors diagnosed at later stages of the disease, associated with a poorer prognosis and a different response to treatment. Human cell lines have been derived from specific subtypes of breast cancer and have served to define the cell physiology of corresponding breast cancer subtypes. However, there are no current cell lines for breast cancer specifically derived from patients with different BMIs. The availability of those breast cancer cell lines should allow to describe and unravel functional alterations linked to these comorbidities. Methods: Cell cultures were established from tumor explants. Once generated, the triple negative subtype in a patient with obesity and a patient with a normal BMI were chosen for comparison. For cellular characterization, the following assays were conducted: proliferation assays, chemo - sensitivity assays for doxorubicin and paclitaxel, wound healing motility assays, matrix invasion assays, breast cancer cell growth to estradiol by chronic exposure to leptin, induction of endothelial permeability and tumorigenic potential in athymic mice with normo - versus hypercaloric diets with an evaluation of the epithelium - mesenchymal transformation proteins. Results: Two different cell lines, were established from patients with breast cancer: DSG-BC1, with a BMI of 21.9 kg/m2 and DSG-BC2, with a BMI of 31.5 kg/m2. In vitro, these two cell lines show differential growth rates, motility, chemosensitivity, vascular permeability, response to leptin with an activation of the JAK2/STAT3/AKT signaling pathway. In vivo, they displayed distinct tumorigenic potential. In particular, DSG-BC2, presented higher tumorigenicity when implanted in mice fed with a hypercaloric diet. Discussion: To our knowledge, these primary cultures are the first in vitro representation of both breast cancer and obesity. DSG - BC2 presented a more aggressive in vivo and in vitro phenotype. These results support the hypothesis that breast cancer generated in an obese metabolic state may represent a contrasting variant within the same disease. This new model will allow both further comprehension, functional studies and the analysis of altered molecular mechanisms under the comorbidity of obesity and breast cancer.

18.
Br J Nutr ; 128(1): 43-54, 2022 07 14.
Artigo em Inglês | MEDLINE | ID: mdl-34340727

RESUMO

Branched-chain amino acids (BCAA) are considered markers of insulin resistance (IR) in subjects with obesity. In this study, we evaluated whether the presence of the SNP of the branched-chain aminotransferase 2 (BCAT2) gene can modify the effect of a dietary intervention (DI) on the plasma concentration of BCAA in subjects with obesity and IR. A prospective cohort study of adult subjects with obesity, BMI ≥ 30 kg/m2, homeostatic model assessment-insulin resistance (HOMA-IR ≥ 2·5) no diagnosed chronic disease, underwent a DI with an energy restriction of 3140 kJ/d and nutritional education for 1 month. Anthropometric measurements, body composition, blood pressure, resting energy expenditure, oral glucose tolerance test results, serum biochemical parameters and the plasma amino acid profile were evaluated before and after the DI. SNP were assessed by the TaqMan SNP genotyping assay. A total of eighty-two subjects were included, and fifteen subjects with a BCAT2 SNP had a greater reduction in leucine, isoleucine, valine and the sum of BCAA. Those subjects also had a greater reduction in skeletal muscle mass, fat-free mass, total body water, blood pressure, muscle strength and biochemical parameters after 1 month of the DI and adjusting for age and sex. This study demonstrated that the presence of the BCAT2 SNP promotes a greater reduction in plasma BCAA concentration after adjusting for age and sex, in subjects with obesity and IR after a 1-month energy-restricted DI.


Assuntos
Resistência à Insulina , Proteínas da Gravidez , Adulto , Humanos , Estudos Prospectivos , Glicemia/metabolismo , Aminoácidos de Cadeia Ramificada , Obesidade/metabolismo , Transaminases/genética , Proteínas da Gravidez/genética , Antígenos de Histocompatibilidade Menor
19.
Nutrients ; 13(11)2021 Oct 29.
Artigo em Inglês | MEDLINE | ID: mdl-34836148

RESUMO

Dietary fiber (DF) is a major substrate for the gut microbiota that contributes to metabolic health. Recent studies have shown that diet-metabolic phenotype effect might be related to individual gut microbial profiles or enterotypes. Thus, the aim of this study was to examine whether microbial enterotypes modify the association between DF intake and metabolic traits. This cross-sectional study included 204 children (6-12 years old) and 75 adults (18-60 years old). Habitual DF intake was estimated with a Food Frequency Questionnaire and biochemical, clinical and anthropometric data were obtained. Gut microbiota was assessed through 16S sequencing and participants were stratified by enterotypes. Correlations adjusting for age and sex were performed to test the associations between dietary fiber components intake and metabolic traits. In children and adults from the Prevotella enterotype, a nominal negative correlation of hemicellulose intake with insulin and HOMA-IR levels was observed (p < 0.05), while in individuals of the other enterotypes, these associations were not observed. Interestingly, the latter effect was not related to the fecal short-chain-fatty acids profile. Our results contribute to understanding the enterotype influence on the diet-phenotype interaction, which ultimate could provide evidence for their use as potential biomarkers for future precision nutrition strategies.


Assuntos
Fibras na Dieta/análise , Ingestão de Alimentos/fisiologia , Microbioma Gastrointestinal/fisiologia , Resistência à Insulina/fisiologia , Adolescente , Adulto , Biomarcadores/sangue , Criança , Estudos Transversais , Inquéritos sobre Dietas , Ingestão de Alimentos/etnologia , Fezes/microbiologia , Feminino , Microbioma Gastrointestinal/efeitos dos fármacos , Humanos , Resistência à Insulina/etnologia , Masculino , México/etnologia , Pessoa de Meia-Idade , Fenótipo , RNA Ribossômico 16S/análise , Adulto Jovem
20.
Rev Invest Clin ; 73(5): 321-325, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34609363

RESUMO

In recent decades, there has been an increase in the presence of metabolic disorders associated with obesity. Central in the treatment of these conditions, including abnormalities in glucose and lipid metabolism, dietary strategies play an important role. However, dietary recommendations are based on the generalization of nutrient or food intake response for all individuals, which not necessarily impacts the health of all individuals. The concept of personalized nutrition or precision nutrition has been recently developed, which states that diet is not the only factor accountable for metabolic responses such as postprandial glucose peaks, but that other factors are also involved, one of the most important of which is the gut microbiota. Therefore, the future of nutritional interventions is to generate algorithms based on the type of food consumed, biochemical parameters, physical activity, genetic variability, and especially the gut microbiota to predict the type of diet a person requires according to his or her metabolic alterations.


Assuntos
Microbioma Gastrointestinal , Nutrigenômica , Medicina de Precisão , Glucose/metabolismo , Humanos , Metabolismo dos Lipídeos , Estado Nutricional
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...